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Summary. An extremal benzenoid, A, is defined by having the maximum number of internal vertices 
for the given number of hexagons. A number of properties of A are treated, where the modes of 
hexagons play an important role. The processes of circumscribing and excising for benzenoids are 
defined and treated in detail, supported by analytical expressions. It is concluded by stating that A 
can always be circumscribed an unlimited number of times. 
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Beitr~ige zur Theorie von benzenoiden Isomeren. Einige Eigenschaften extremer Benzenoide 

Zusammenfassung. Ein extremes Benzenoid A wird durch die maximale Anzahl yon internen Vertices 
fiJr eine gegebene Anzahl von Sechsecken definiert. Es werden einige Eigenschaften von A behandelt, 
wobei die Erscheinungsformen der Sechsecke eine wichtige Rolle spielen. Der Prozess der Umschrei- 
bung und Ausschneidung der Benzenoide wird definiert und im Detail behandelt, wobei analytische 
Ausdriicke zur UnterstiJtzung herangezogen werden. Es wird geschlossen, dab A stets unbegrenzt oft 
umschrieben werden kann. 

Introduction 

A benzenoid system (or shortly benzenoid) consists of mutually connected 
congruent regular hexagons in a geometrically planar arrangement I-1-3]. It has an 
obvious counterpart in a benzenoid hydrocarbon, CnHs, chemically known or 
unknown. Let the chemical formula (Chris) be denoted alternatively as (n; s) and a 
benzenoid B with that formula as B(n; s). Then B(n; s) is here referred to as a 
benzenoid isomer (in a restricted sense). The number of C,Hs benzenoid isomers is 
the number of nonisomorphic benzenoid systems compatible with the formula in 
question. This number is also referred to as the cardinality of C,Hs and written 
[C~Hsl or [n;sl. 

It is noted that n (the total number of carbon atoms) corresponds to the total 
number of vertices of the benzenoid system, while s (the number of hydrogens, also 
the number of secondary carbons) corresponds to the number of vertices of degree 
two. The benzenoid isomers B(n; s) are also identified by other pairs of invariants, 
e.g. (h, ni), where h is the number of hexagons, and ni is the number of internal 
vertices. Correspondingly, a benzenoid B can also be identified by the symbol 
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B(h, ni). The connections between the two pairs of invariants referred to above are 
given by 

(n; s) = (4h - n~ + 2; 2h - -  n i q-  4 )  (1) 
and 

(h, nl) = ((1/2)(n - s) + 1, n - 2s + 6). (2) 

For  the catacondensed (nl = 0) benzenoids, viz. C4h+2H2h+4, the number  of 
isomers increases with the number  of hexagons (h). For  h - -1 ,2 ,  3 , . . . ,  10 these 
numbers  (cardinalities) are [-4] 1, 1, 2, 5, 12, 36, 118, 411, 1489, 5572, respectively; for 
h = 11 [-5], 21115; h = 12 [6, 7], 81121; h = 13, 14 [-8], 314075, 1224528 and finally 
for h = 15 [9]: 

1C62H341 = 4799205. (3) 

On the other hand, there exist series ofbenzenoid  formulas for which the number  
of isomers in each case is the same. Such series, after a strict specification, are referred 
to as constant- isomer series (of benzenoids) [10]. 

The extremal benzenoids [-11] constitute an impor tan t  class of benzenoid 
systems. They are defined precisely in a subsequent  section. The present work deals 
mainly with the properties of extremal benzenoids. These studies represent a 
contr ibut ion to the theory of constant- isomer series since the isomers of such series 
are supposed to be covered exactly by the extremal benzenoids. This feature is very 
likely to be true, a l though it has not  yet been proved rigorously. 

Results and Discussion 

1. Pre l im inar i e s  on E x t r e m a l  B e n z e n o i d s  

Here we give a definition of extremal benzenoids [11] and summarize some well 
known properties of the systems of this class. 

D E F I N I T I O N  1.1: An extremal benzenoid is a benzenoid with the max imum 
number  of internal vertices (nl) for a given number  of hexagons (h): n i = (ni)max(h). 

Extremal benzenoids exist for all possible h values: h -- 1, 2, 3 , . . . .  The max imum 
number  of internal vertices is known as a function of h [-11, 12]: 

(nl)max(h) = 2h + 1 - [(12h - 3 ) 1 / 2 - ] .  (4) 

Here the "ceiling" function is employed: l-a] is the smallest integer larger than or 
equal to a. 

A benzenoid system which is not  extremal, is also called a non-extremal  
benzenoid. The two classes of extremal and non-extremal  benzenoids cover exactly 
all the benzenoids. 

An extremal benzenoid has also, for a given h: the min imum number  of vertices, 
n = nmin(h); the min imum number  of edges, m = mmln(h); the m i n i m u m  number  of 
external vertices or external edges (equal to the perimeter length), n e = (ne)min(h); the 
min imum number  of vertices of degree two; s = Smin(h). Each of these properties 
could be used as an alternative definition for the extremal benzenoids. 

For  an extremal benzenoid A(h ,  ni) also the number  of hexagons (h) is a 
min imum for the number  of internal vertices (n~) in question: h -- hmin(ni). However,  
this proper ty  should not  be used as a definition for extremal benzenoids without  



Theory of Benzenoid Isomers 479 

precaution. When n / =  5, for instance, hmi n = 7 (realized in C25H13), but  these 
isomers are not  extremal benzenoids. As a mat ter  of fact there are no extremal 
benzenoids with n~ = 5, but  one has hmi n --- 7 also when n~ = 6, and this is a pair of 
invariants for an extremal benzenoid (C24H12 coronene). 

Also, if in A(n; s) the number  of vertices (n) is the max imum for a given number  
of vertices of degree two (s), viz. n = nm,x(s), then A is an extremal benzenoid. 
However,  this proper ty  is not  necessarily fulfilled for an extremal benzenoid and 
can therefore not  be taken as a definition. Example: C 2 2 H 1 2  and C 2 4 H 1 2  a r e  both 
formulas for extremal benzenoids, but  only in the latter c a s e  ( C 2 4 H 1 2  coronene) 
n = nma x = 24 for s = 12. 

Let A(n; s) -= A(h, hi) be an extremal benzenoid. Then, according to Definition 
1.1, Eq. (4) and Eq. (1), the formula of A is given by: 

(n;s) = (2h + 1 + [(12h-3)1/2] ;  3 + [ (12h-3) l / z ] ) .  (5) 

Since a formula (n; s) also determines the pair of invariants (h, ng) it is clear, when 
Definition 1.1 is recalled, that  all the benzenoid isomers with a given formula (n; s) 
are either extremal or non-extremal  exclusively. This feature is elaborated in the 
following theorem. 

T H E O R E M  1.1: If A(n; s) is an extremal benzenoid, then all the isomers with the 
formula (n; s) are extremal. Conversely, if B(n'; s') is a non-extremal  benzenoid, then 
none of the (n'; s') isomers are extremal. 

2. Modes of Hexagons in Extremal Benzenoids 

For  a definition of the modes  of hexagons in benzenoid systems two recent 
monographs  may  be consulted [-3, 13], but  also the illustrations in the following are 
supposed to be self-explanatory. A number  of smaller theorems (referred to as 
propositions) are formulated and proved (more or less completely) below. Herein A 
is used to designate an extremal benzenoid. 

P R O P O S I T I O N  2.1: The modes  L0 and L1 occur for A only when h = 1 and h = 2, 
respectively. 

These two cases are illustrated below. 

I (C6H6) II (C10H8) 

The mode  L o is specific for benzene (I). In order to demonstra te  the second part  
of the proposit ion,  suppose that  A for h > 2 had an L l -mode  hexagon. Then it would 
be possible to move this hexagon into another  posi t ion on the perimeter, creating 
a mode  different from L1. Hereby h would be unchanged,  while nz would increase - a 
contradiction.  
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PROPOSITION 2.2: In A the modes Lz, A2, A3, P3, L,, and A 4 n e v e r  occur. 

Example: 

For most of these modes the validity of this proposition follows from the fact that, 
ifa benzenoid can be separated into two parts by cutting along one edge, it can be put 
together again in a way so that one or more internal vertices are created. It is noted 
that the separation along one edge does not affect the internal vertices. Now it 
remains to prove the proposition for the A4-mode. Start by removing the A4-mode 
hexagon. Thereby n~ decreases by 2. Thereafter it is always possible to put the three 
parts together, the single hexagon and two benzenoids, so that n~ increases by more 
than 2. The above considerations (especially those for A4) do not represent a 
stringent proof of Proposition 2.2. 

In summary, it can be said that A can not possess any "thin" part. The remaining 
modes, which occur in A systems for h > 2, are Pz, L3, P4, L5 and L 6. The first four 
of these modes (not L6) are found along the perimeter. Example: 

III (C35tI15) 

It is of special interest to account for the hexagons with free edges (along the 
perimeter). A free edge is an edge between two vertices of degree two [31. For the 
extremal benzenoids with h > 2 it appears from the above statements that the free 
edges are only found in P2- and L3-mode hexagons. More details about the 
properties along the perimeters of extremal benzenoids are treated in the next 
section. 

3. Some Perimeter Properties of Extremal Benzenoids 

In preparation of this discussion we shall recall the definition and properties of 
addition modes. An addition mode [-3] is a mode acquired by a hexagon when added 
to the perimeter of a benzenoid. In general there are the five possibilities L1, P2, L3, 
P4 and L 5. They are associated with the one-, two-, three-, four- and five-contact 
additions, respectively. A survey is given in Table 1. The account of the increments 
in the numbers of internal vertices (n~) during the different types of additions is 
especially relevant in the present context. 
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Table 1. The five types of addition of a hexagon to a benzenoid 
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Type of addition Description* Acquired 
mode 

Increment 
in ni 

one-contact fusion to a free edge (or annelation) L x 0 
two-contact filling a fissure P2 1 
three-contact embedding in a bay L3 2 
four-contact covering a COVe P4 3 
five-conent immersing in a l]ord (fiord) L5 4 

* For the designations of the different formations (free edge, fissure, bay, cove, 0ord) on the perimeter, 
the cited monographs [3, 13] may be consulted 

For  extremal benzenoids with h > 2 only P2 and L 3 occur as the addition modes  
of hexagons with free edges. Normally  an extremal benzenoid A possesses either no 
P2-mode hexagon or exactly one P2, as we shall see. The exceptions for relatively 
small systems were found by inspection of the known forms [14] and are specified 
below. 

P R O P O S I T I O N  3.1: There are 
hexagons in each. 

These extremal benzenoids are: 

exactly two A systems with three P2-mode 

w (C13H9) 

P R O P O S I T I O N  3.2: There 
hexagons in each. 

They are: 

VI (CI6HI0) 

& 
v (C22H12) 

are exactly seven A systems with two P2-mode 

VII (C19H11) VIII (C22H12) IX (C22H12) 

x (C3oa14) XI (C30H14) XII (C30H14) 
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For anyone of the larger extremal benzenoids more than one Pz-mode hexagon 
is not possible. Suppose that such a situation occurred. Then it could always be 
possible to re-arrange the hexagons so that, in the last instance, a Pz-mode hexagon 
would be embedded in a bay so as to acquire an L3-mode. This process would give a 
net increment of 1 in the number of internal vertices - a contradiction. Example: 

C25H13(n/=5) c25~13 (~C 5) XIII C24H12 (hi=g) 

Now it should be explained why this type of reasoning is generally applicable under 
the given circumstances. Suppose first that A has two Pz-mode hexagons. These two 
hexagons must be situated so that a system without any bay is obtained when they 
are removed. Otherwise one could immediately embed one of these hexagons in a 
bay to increase n~. Therefore the initial system (A) must be a generalized hexagon 
with the two Pz-mode hexagons added. A generalized hexagon is by definition a 
benzenoid with exactly six free edges. Furthermore, each P2 hexagon must be added 
to a row of two hexagons in one of the six directions as is exemplified by all the 
systems VI-XII. But under the restrictions of minimum size, as are obeyed in the 
above example, the generalized hexagon must have at least one row of at least three 
hexagons, which makes it possible to execute the last step of the procedure. For 
three Pz-mode hexagons, after a similar reasoning, one finds that the initial system 
must be a triangle of the type V. The rest of the reasoning goes by analogy with the 
first case. Finally, more than three Pz-mode hexagons are found to be impossible 
for an extremal benzenoid from the outset. The essence of these considerations is 
formulated in another proposition. 

PROPOSITI ON 3.3: In any A with h = 7, 8 and h > 9 there is no or exactly one 
Pz-mode hexagon. 

To be precise, there is neither any Pz-mode hexagon in A for h = 1 (see System I) 
or h -- 2 (System II). For h = 3 through 6 the systems IV-IX represent all the 
extremal benzenoids, including the three isomers of C22H12. Coronene (XIII; see 
above) is the unique extremal benzenoid with h = 7 and has no Pz-mode hexagon. 
Also for h = 8 there is a unique extremal benzenoid; it has one P2-mode hexagon: 

XIV (C27H13) 
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For h = 9 there exists, in addition to the three C3oH14 isomers depicted above 
(X-XII), a "normal" extremal benzenoid with one P / -mode  hexagon [14]: 

xv (c30n~4) 

The examples III, IX, XI and XV show that extremal benzenoids may possess 
bays. In fact, the fissures and bays are the only intruding formations of the perimeter 
which occur in extremal benzenoids, as is consistent with the following proposition. 

P R O P O S I T I O N  3.4: An A can never possess a cove or a fjord. 

Suppose namely that A had a cove or a 0ord. Then it would be possible to move a 
P2- or L3-mode hexagon into one of these formations, which would result in a net 
increment in ni (cf. Table 1) - a contradiction. Examples: 

C31H15(n~ =7) Xl C30H14(ni--8 ) 

C43H19(n~ =II) XVI C40HI6(U~=I4 ) 

In XVI (circumphenanthrene) the contour of phenanthrene is indicated in bold. 

P R O P O S I T I O N  3.5: An A can never possess a bay simultaneously with a P2-mode 
hexagon which is not a part of the bay. 

Suppose that the conditions of this proposition were fulfilled. They imply that the 
bay would still be there if the P2-mode hexagon was removed. But then this hexagon 
could be embedded in the bay, whereby the net number of internal vertices would 
increase by 1 - a contradiction. The middle system in one of the above diagrams 
provides an example. The described process generates coronene (XIII), which is 
depicted in the same diagram. 
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4. Perimeter Parameters 

In connection with the preceding section some parameters associated with the 
perimeter and relations between them are reported in the following, especially with 
relevance to the extremal benzenoids. 

It is recalled (cf. Section 1) that an extremal benzenoid may be defined 
(alternatively to Definition 1.1) by having the minimum perimeter length (ne) or s 
value for a given h. Here 

n e = 2 s -  6. (6) 

The minimum values under consideration are given by [11, 15] 

(ne)min(h) = 2 [ (12h - 3) 1/2 ] (7) 

and 

Smin(h ) -= 3 -t- [ (12h-  3) 1/2] (8) 

cf. also Eq. (5). 
The perimeter length is obviously given by 

ne = 51L11 + 4(IL21 + [A2[ + IP21)+ 3(1A31 + IZ31 + Ie31) 

+2([L41+ [A41 + I P ,  I)+ [Z5[ (9) 

in general. Here ]XI is used to denote the number of hexagons in mode X. The 
number of free edges, say f ,  is in general: 

f = 31Lll + Ia21 + 21P21 + Iz31 = b + 6. (10) 

Similar considerations are also found elsewhere [3, 16-18]. In Eq. (10) b designates 
the number of bay regions, to which a bay contributes by 1, a cove by 2 and a l]ord 
by 3. Now we consider the special cases of(9) and (10) for extremal benzenoids. Then 

b --ILsI (11) 

signifies simply the number of bays. On neglecting the modes of hexagons which do 
not occur in extremal benzenoids with h > 2 and inserting from (11), Eq. (9) reduces 
t o  

ne = 41P21 + 31L31 + 21P4[ + b. (12) 

Furthermore, under the same restrictions, 

f = 21P21 + [Z31 = b + 6. (13) 

On combining (6), (12) and (13) it was finally arrived at 

s =  31P21 +2IL31+IP4I = 2 b - l P 2 l  + l e 4 l +  12 (14) 

It is stressed that (12)-(14) are valid for the special cases of extremal benzenoids with 
h > 2. Then, according to the deductions in Section 3, IP21 is normally 1 or 0, in 
exceptional cases (IV-XII) 2 or 3. 

5. Circumscribing and Excising 

The process of circumscribing is defined for many, but not for all benzenoid systems. 
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D E F I N I T I O N  5.1: A benzenoid B is circumscribed when, if possible, a single chain 
of hexagons is added all the way a round  the perimeter  of B. Each of the added 
hexagons should share exactly two non-incident  edges with its two neighbours 
among  the added hexagons. 

Examples: Coronene  (XIII) is circumscribed benzene; the system XVI is circum- 
scribed phenanthrene  (circumphenanthrene).  

Assume that  B1 is circumscribed B (circum-B), and introduce the nota t ion  

B 1 = c ( B ) .  ( 1 5 )  

In t roduce  also the formulas for B and B1 as given by B(n;s) and Bl(n~;s~), 
respectively. Fur thermore ,  let the numbers  of hexagons and numbers  of internal 
vertices be specified by B(h, ni) and Bl(h l, (ni) O. The number  of hexagons which have 
been added to B during circumscribing, is s, and the number  of internal vertices of 
B~, viz. (ni)l, is the total number  of vertices of B, viz. n. Consequently,  

(hi, ( n l h )  = (h + s, n). (16) 

By means of the known  relationships between the different invariants of benzenoids 
- see, e.g. Eqs. (1) and (2) - one obtains readily [14] 

Similarly [14]: 

( h l , ( n i ) l )  = (3h - ni + 4, 4h - ni + 2) 

= ((1/2)(n + s) + 1, n). (17) 

( n l ; s l ) = ( n +  2 s +  6; s + 6 )  

= (Sh - 3nl + 16; 2h - nl + 10). (18) 

Assume now that  B can be circumscribed k times, and denote  the resulting benzenoid 
by 

B k = ck(B ). (19) 

In t roduce  also Bk(hk, (nl)k) = Bk(nk; sk). The generalization of (17) reads 

( h k ,  (hi)k) = (3k 2 + k (2h  - n i + 1) + h, 6k 2 + 2k(2h - -  n i - -  2) + hi) 

= (3k 2 + k(s  - 3) + (1/2)(n - s) + 1, 6k 2 + 2k(s  - 6) + n - 2s + 6). (20) 

Similarly, for the generalization of (18) [19, 20]: 

(nk; Sk) = (6k 2 + 2ks  + n; s + 6k) 

= (6k 2 + 2k(2h - n~ + 4) + 4h - ni + 2; 2h - ni + 6k - 4). (21) 

The process of excising is opposite to circumscribing. Here we follow John [18] 
in a precise definition of this process for an arbitrary benzenoid B. 

D E F I N I T I O N  5.2: The excised B is obtained by removing all the external vertices 
(on the perimeter) of B and all their incident edges. 

Let the excised B (or excis-B) be denoted by e(B). Notice that  e(B) is not  always a 
benzenoid. It may  be the empty  graph (if and only if B is a catacondensed benzenoid), 
a non-benzenoid (with one or more  edges not  belonging to hexagons), and it may  
be a disjoint system. 
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Consider now Eq. (15), which implies that B can be circumscribed and defines 
B~. Under this condition e(B1) is a benzenoid, viz. 

B = e(B, ) .  (22) 

The relations (15) and (22) are compressed to 

B1 = c(e(B1)), (23) 

More generally, with reference to Eq. (19), B k can be excised k times, yielding the 
original benzenoid B, as is expressed by: 

B = ek(Bk).  (24) 

Now Eqs. (19) and (24) are compressed to 

B k = Ck(ek(Bk)). (25) 

The relation (23) indicates that B1, under the given conditions, is not a core 
benzenoid; it is sometimes referred to as a non-core benzenoid. The below definition 
of a core benzenoid is adopted from John [18]. 

D E F I N I T I O N  5.3: A benzenoid B 0 is a core benzenoid if and only ifc(e(B0) ) ¢ B o. 

In our examples of extremal benzenoids, the systems I-XII,  XIV, XV are core 
benzenoids. In all these cases e(B0) is either an empty set or a non-benzenoid. The 
systems XIII and XVI are non-core benzenoids. 

An observation by John [18] can be translated into the statement: B 0 is a core 
benzenoid if it contains (at least) a hexagon in the mode L0, L1, L 2, A2, Aa, P3, L4 
or A4. We are able to add P2 to this list, since the presence of this mode guarantees 
that e(Bo) will be a non-benzenoid. The absence of P2 in the above list is simply due 
to a misprint in the cited reference [18]. Now it should be realized that e(Bo) may 
also be a non-benzenoid (and hence B 0 a core benzenoid) in absence of the modes 
of hexagons mentioned above. An example is circumbiphenyl: 

1c3  10 
Here biphenyl is drawn in bold. Circumbiphenyl is not an extremal benzenoid. 

Some of the above observations are precipitated in the following statement. 

P R O P O S I T I O N  5.1: The extremal benzenoids benzene (I), naphthalene (II) and all 
those with one or more P2-mode hexagons are core benzenoids. 

It may also happen that B o is a core benzenoid even if e(Bo) is a benzenoid. In 
this connection it is important  to realize that the benzenoid B 0 is not determined 
uniquely by e(B0); one may have e(B')= e(B") for B ' ¢  B'. This situation is 
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contrasted by c(B), which determines B uniquely. Consider as an example 
benzo [a] coronene: 

C28H14 

The excised benzo[a]coronene is benzene (I), the same as the excised coronene 
(XIII). Benzo[a]coronene is a core benzenoid, while coronene is not. 

A quite precise statement can be made with regard to the nature of core 
benzenoids. In preparation to this statement we need the below definition. 

DEFINITION 5.4: A fusing edge of a benzenoid B is an edge between two vertices 
which both are of the degree three and lie on the perimeter of B. 

Loosely speaking, a fusing edge is a short cut on the perimeter. The benzenoid B is 
split into two smaller benzenoids when cut along a fusing edge. Conversely, B (which 
possesses a fusing edge) can be interpreted as two smaller benzenoids fused together 
by one free edge from each of them. Example: The benzenoid of the diagram below 
Proposition 2.2 has five fusing edges. 

An L~-, P3- or L4-mode hexagon is accompanied by one fusing edge each, an 
L2- or A2-mode hexagon by two fusing edges each, and the A3-mode is accompanied 
by three fusing edges. A benzenoid where none of these six modes are present, has 
no fusing edge. 

PROPOSITION 5.2: A benzenoid B o is a core benzenoid if and only if (a) e(Bo) is 
not a benzenoid, or (b) B 0 has a fusing edge, or both (a) and (b) are fulfilled. 

The categories (a) and (b) of this proposition are illustrated by the systems C38H~6 
and C28H~4, respectively, of the above diagrams. Two examples of core benzenoids 
where both of the conditions (a) and (b) are fulfilled, are shown below. 

C31H15 C38H18 

Here the excised benzenoids are given in bold: excis-CalH15 = C7H7; excis- 
C38H18 = C6H 6 - t -C2H 4 -~ C s H l o .  It is noted that e(Bo) very well may be a 
non-core benzenoid even if B o is a core benzenoid; see the below example 
(excis-CssH2o = Cs4H18 ). 
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C58H20 

Proposi t ion 5.2 is explained by recalling the nature of excising (cf. Definition 5.2). 
It is clear that  B o is a core benzenoid if (a) or (b) of the proposi t ion is fulfilled: if (a) 
is fulfilled, then c(e(B0) ) has no meaning,  and B o is automatically a core benzenoid 
(cf. Definition 5.3); if (b) is fulfilled, then obviously Bo is not  restored by 
circumscribing e(Bo). Finally it should also be explained that  B is not  a core 
benzenoid if B _ 1 = e(B) is a benzenoid and B has no fusing edge. In this case B _ a 
can be circumscribed, and c(B_ 1) = B. 

Following John [18], let B 0 be called a reproducible benzenoid if and only if 

Bp+ 1 = c(Bp) (26) 

exists for every p = 0, 1,2 . . . . .  Also the systems B1,BE, B3, . . .  are referred to as 
reproducible benzenoids (belonging to Bo). A reproducible benzenoid may  also be 
defined in the following way. 

D E F I N I T I O N  5.5: A benzenoid B is said to be reproducible if and only if B can be 
circumscribed an unlimited number  of times. 

Clearly any reproducible non-core benzenoid Bp (p > 1) belongs to a unique 
reproducible core benzenoid. This core benzenoid must  eventually be reached by 
repeated excising of B: Bp_ 1 = e(Bp), Bp_ 2 = e(Bp_ 0 , - . -  • 

It is pointed out  that  Eqs. (20) and (21) under  certain condit ions also are 
applicable to excising when it is allowed for negative k values. Assume that  
Ck(B_k) = I .  Then B can be excised k times so that  we can write 

B_k = ek(B). (27) 

Under  these conditions, f rom the first part  of Eq. (21) for instance, it is obtained 1-19] 

(n_ k; S_ k) = ( 6k2 -- 2 k s  + n; s - -  6k) (28) 

when the nota t ion  B _k(ll_k; S_k) is assumed to have been introduced.  In the special 
case of k = 1 one has 

B_ 1 = e(B). (29) 

On introducing B_ l(n_ 1; s_ 1) it is arrived at a formula similar to the first part  of 
(18), viz. [19, 20] 

(n- 1 ; s - 0  = (n - 2s + 6; s - 6). (30) 

This relation is valid when c(B_ 1) = B, which is to say that  B should be a non-core 
benzenoid. 

It remains to deduce a general expression for the formula coefficients of an 
excised benzenoid, viz. B_ l(n-1; s_ 0, from B(n; s), where B may  or may  not  be 
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a core  benzenoid.  Again it is a s sumed  that  B and B_ 1 obey  Eq. (29). Al though  being 
somewha t  tedious,  we shall fol low Defini t ion 5.2 in the fol lowing deduct ion.  Let  m 
and m _ 1 deno te  the n u m b e r  of  edges in B and B _ 1, respectively. We  wish to deduce  
m_ 1 from m. Firstly, subt rac t  the n e edges on the per imeter  of  B. Here  n e is used to 
denote,  as usual, the n u m b e r  of  external  vertices, equal  to the n u m b e r  of  external  
edges of  a benzenoid  [-3, 13]. Secondly,  sub t rac t  the t edges of  which (at least) one 
of the end points  is a vertex of  degree three on  the per imeter  of  B. This last process  
subtrac ts  every fusing edge (Definit ion 5.4) twice. Therefore,  if the n u m b e r  of  fusing 
edges of  B is m*, then m* must  be added.  The net result  is 

m _  1 = r n -  n e - -  t + m *  (31) 

or  slightly rewri t ten as 

m - m_ 1 = ne + t - m*. (32) 

F r o m  the well k n o w n  connect ions  be tween  different invariants  of  benzenoids  
[-1, 3, 13, 14, 16] it is easily deduced  that  m = (1/2)(3n - s), n e = 2s - 6, and t = s - 6. 
Consequen t ly  Eq. (32) is rendered into the form 

(3/2)(n - n_ 1) - (1/2)(s - s_ 1) = 3s - m* - 12. (33) 

One  has also n - n_ 1 = n~ or  

n - n_ 1 = 2s - 6. (34) 

W h e n  solved with respect  to n_ 1 and s_ x Eqs. (33) and  (34) yield: 

(n_~;s_  0 = (n - 2s + 6; s - 2m* - 6). (35) 

It is seen that  Eq. (30) is the special case of(35)  for m* = 0. It appears  therefore that  
Eq. (30) is valid even when B is a core  benzenoid,  if only m* = 0. 

In order  to exemplify Eq. (35), cons ider  the systems (a) C31H15 and (b) C38Ha8 
in one  of  the d iagrams above.  (a) n =  31, s =  15, m * =  1 gives n -1  = 7 ,  s_~ = 7 ;  
(b) n = 38, s = 18, m* = 1 gives n_ 1 = 8, s_ 1 = 10. Cons ider  now a ca t acondensed  
benzenoid  with h hexagons,  say Qh(n;s). It has m * =  h - 1  fusing edges, while 
n = 4h + 2 and s = 2h + 4. O n  inserting these expressions into Eq. (35) one obta ins  
n_ 1 = s_ 1 = 0 for every h. This reflects the fact that  e(Qh) is the emp ty  graph (see 
above). 

6. L a t e n t  R o w  o f  H e x a g o n s  

D E F I N I T I O N  6.1: A latent  row (of hexagons)  in a benzenoid  B is a single chain of  
hexagons  on  the hexagonal  lattice be tween  two (parallel) edges of  the per imeter  of  B. 

It is u n d e r s t o o d  that  the hexagons  of  the latent  row are not  occupied  by hexagons  
of  B. Hence  the la tent  row is only a "gap"  connec ted  with the per imeter  of  B. A 
latent  row of 2 hexagons  is depic ted below. The penden t  edges ma y  or ma y  not  
belong to hexagons  of  B. 
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Two types of latent rows of hexagons in B are distinguished; all the hexagons of 
the latent row, if materialized, may be incident to hexagons of B (along its 
perimeter), or this may not be the case. The two types shall be referred to as a 
proper- and improper latent row, respectively. In the below diagram both of these 
types are illustrated. 

I 

Ill 

II 

PROPOSITION 6.1: A benzenoid B is reproducible if and only ifB does not possess 
any latent row of hexagons. 

If B has only one latent row of hexagons, then it must be proper. If B has two or 
more latent rows, then at least one of them must be proper. Hence the condition of 
Proposition 6.1 can be sharpened by saying that B has no proper latent row of 
hexagons. With this modification Proposition 6.1 is a translation of an observation 
by John [18], although he based his approach on concepts which are largely different 
from the present ones. 

It is obvious that the presence of a latent row in B hinders that B can be 
circumscribed without limitation. This is seen to be a part of Proposition 6.1 when 
Definition 5.4 is remembered. A more precise statement is formulated in the 
following. 

PROPOSITION 6.2: Ifa benzenoid B has a latent row of 2 hexagons, then B cannot 
be circumscribed ). times. 

This proposition appears to be evident when the relevant types of the perimeter 
shape are inspected. It is not implied, however, that B can be circumscribed 2 -  1 
times when the shortest latent row in B holds ). hexagons. In the last diagram (see 
above) some elucidating examples are given. In all cases the shortest latent rows of 
hexagons (indicated by stippled lines) comply with ). = 3. The system I can be 
circumscribed 2 - 1  -- 2 times, but not more, II can be circumscribed only once, 
while III cannot be circumscribed at all. 

The remaining part of Proposition 6.1 amounts to saying that B can be 
circumscribed an unlimited number of times when it does not possess any latent 
row of hexagons. In order to prove this it should be verified that every feature which 
hinders an unlimited circumscribing of B entails the presence of (at least) one latent 
rOW. 

For the sake of completeness a well-known fact [-14, 18] is formulated below. 

PROPOSITION 6.3: A benzenoid B cannot be circumscribed if it possesses a cove 
or a fjord. 
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A cove and a fjord [-3, 13] are actually special cases of a latent row when it is 
allowed for a "row" of one hexagon (2 = 1). In a cove there is a pair of parallel edges 
which define the latent row. In a fjord there are two pairs of such edges defining 
formally two latent rows in terms of the gaps between the edges. However, one and 
the same hexagon fills both these gaps simultaneously. Under  the scope of the above 
discussion it is clear that the Proposition 6.3 is a special case of Proposition 6.2. 

The definition of a latent row is relevant to the extremal benzenoids, which 
exhibit some important  properties reported in the following. 

P R O P O S I T I O N  6.4: An extremal benzenoid A has no latent row of hexagons. 

Proposition 3.4 about the absence of coves and fjords in A, which is proved above, 
is clearly a special case of Proposition 6.4. A proof  of Proposition 6.4 was conducted 
in detail elsewhere [-21] and shall not  be repeated here. It follows the same principles 
as our proof of Proposition 3.4 (see above). It is demonstrated [21] that, by filling 
a proper latent row of hexagons of a benzenoid B from one side with certain 
hexagons taken from the perimeter of B, the number  of internal vertices of B will 
inevitably increase sooner or later; hence B cannot be an extremal benzenoid. 

An important  corollary emerges from Proposition 6.1 and Proposition 6.4 [21]: 

COROLLARY 6.1: Every extremal benzenoid A is a reproducible benzenoid. 

In other words (cf. Definition 5.5) every A can be circumscribed an unlimited number  
of times. 

Conclusion 

The present paper is the first part  of a systematic approach to the theoretical studies 
of extremal benzenoids. This work, which has relevance to the constant-isomer 
benzenoid series [10, 17] of great chemical interest, is far from ended. It seems to 
be worth the while to continue this systematic treatment although several 
contributions to the theory of extremal benzenoids using different approaches, have 
recently been published [20-24].  
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